Nov. 11, 2024
In the mechanical world, where machinery and equipment make the earth move and gears rotate, the oil seal is an important component. Oil seals, or shaft seals, are a crucial part of various industrial equipment and applications, ensuring that lubricants don’t escape and contaminants don’t enter. While they may seem simple, their construction, design, and application are anything but. This in-depth guide aims to help you understand the essential role of oil seals, their construction, the various designs available, and key factors to consider when selecting one for your application.
An oil seal serves three crucial purposes within any machinery. First, it prevents the leakage of lubricants or fluids outside the seal, even under high pressure. This function ensures the effective operation of equipment, as sufficient lubrication is a key requirement for the smooth functioning of machinery. Second, it retains the lubricating oil within the machinery. This retention function reduces the need for constant maintenance or re-lubrication, saving time and resources. Third, the oil seal acts as a barrier against contaminants. It prevents dirt, dust, and other potential contaminants from entering the machinery, protecting sensitive parts from damage or wear.
The construction of an oil seal is a testament to meticulous engineering. Each oil seal primarily comprises two core components: the sealing element and the metal case. The collaboration of these parts brings about the seal’s functionality and effectiveness. A garter spring may also be included as an available feature, providing an extra layer of operational support.
The sealing element, also known as the sealing lip, forms the interior of the oil seal. Various materials can make up the lip depending on the application’s specific needs. Below are some commonly used materials:
The metal case serves as the oil seal’s exterior or frame, providing rigidity and strength to the seal. The case material selection depends on the environment in which the seal will operate. Often, the same rubber material used in the seal element covers the case to help seal the exterior of the oil seal in the housing bore.
Oil seals with outer metal cases may include finishes or treatments applied to the outer edge to aid in rust protection, identification, and sealing of scratches or imperfections in the housing bore. Common finishes applied to the outside edge of metal O.D. oil seals include plain (a bonding agent of usually a yellowish-green color), a color-painted edge, and a grinded-polished edge.
When included, the garter spring applies pressure to the sealing lip against the shaft, ensuring a tight seal. The choice of material, like that of the case, largely depends on the environment of use.
Garter springs are generally used when the lubricant is oil, as it provides the necessary downward force to maintain a tight seal. However, when grease is the lubricant, garter springs can often be eliminated. Due to its low viscosity, grease doesn’t require as much downward force to maintain an effective seal.
Oil seals come with various lip designs, each serving a unique purpose and suitable for different applications. Let’s discuss the most common industry-standard lip designs:
Beyond the variety of lip designs, oil seals also come in various case designs, each serving a unique role. Here are some of the most common ones:
Selecting the right oil seal involves comprehensively evaluating your application’s needs and conditions. Below are the key factors to consider when choosing an oil seal:
It is crucial to understand that oil seals, like any other mechanical component, are subject to failure over time. The key to minimizing downtime and enhancing operational efficiency is recognizing the signs of oil seal failure and understanding its reasons. Here are some common failure modes:
Proper maintenance and regular inspection are vital for prolonging the service life of oil seals and preventing unplanned downtime. Here are some tips:
Oil seals are integral components in a range of machinery and equipment, playing a vital role in keeping lubricants in, contaminants out, and machinery operating efficiently. Understanding the design, materials, and selection factors of oil seals can help you make an informed choice regarding your industrial needs. The reliability, longevity, and efficiency the right oil seal can bring to your machinery is priceless.
Global O-Ring and Seal offers over 50,000 unique oil seals with 215,000 cross-referenced part numbers for OEMs and Manufacturers. To find a part you need, search for the OEM/Manufacturer part number alone, and the oil seal matching the part number will be displayed. If you don’t have a part number, visit our online store and use the filter options to find the oil seal you are interested in. If you are unsure which oil seal is right for your application, please contact us and speak with a sales representative to discuss your best options.
If you deal with rotatory shaft equipment, you would probably be having rubber seals in your mechanical assembly. For any manufacturing company, optimal functionality, efficiency, and long service life are essential to your success in the market. A component that is majorly underappreciated within a machine assembly, would be oil seal.
Shaft seals are used to prevent lubricant leaks like oil or grease and protect machinery from dirt, dust, and water—which makes them invaluable to industrial operations. In this post, we will dive deeper into oil seals and discuss everything that one must know, such as what it is, how it works, types, applications, and what to keep in mind when buying oil seals.
Rubber oil seals are placed between moving and static parts of mechanical equipment to prevent damage caused by moisture, contaminants, etc. Also known as rotatory shaft seals, grease seals, fluid seals, lip seals, and dirt seals; oil seals play an important role in closing the gaps between moving and stationary parts of machines.
Their main purpose is to retain or separate fluids from mixing and escaping the gauge, as well as stop moisture, abrasives, corrosive materials, and foreign contaminants from entering the parts, thereby ensuring maximum machine efficiency. Moreover, shaft rubber seals help prevent lubricant leakage at high pressure, for instance, when the machine is working at an extremely high pace.
Oil seals work by retaining lubricant in a thin layer between the lip and the shaft. These seals are attached to the bearing, with their lip pressing against the rotating shaft and the casing resting against the housing to hold the seal in place.
Oil seals perform some functions that ensure functionality at all costs and they do this by retaining lubricants at all costs and not making them escape no matter how high the pressure is. Whenever an oil seal fails, it creates seal leakage allowing abrasives, corrosive moistures and sediments to enter machines. Oil seals are especially used in equipment that has rotating, oscillating, and reciprocating shafts – pumps, pistons, etc.
Different types of seals offered by rubber products manufacturers in India include – Single and double lip oil seals, metal cased, external and internal oriented oil seals, and spring-energized oil seals and you can pick the one that best suits your industry requirements.
Practically, all machine equipment including assembled machines, car engines, and PTFE machined parts use these oil seals to prevent harmful interactions that could possibly result in damaged parts. They are used in the assembly of Elevators, conveyor belts, engines, grinding mills, pipelines, wind turbines, and more.
When equipment is under high pressure, lubricants tend to escape, and dry parts clash. Oil seals help prevent this by sealing holes where lubricants can leak out. rubber seals are designed to offer optimum sealing performance and extreme durability even under high-peripheral speed. They are lightweight, compact, and exhibit high self-lubricating properties. Oil seals are manufactured with high-grade materials and last long without showing any signs of hardening, softening, or aging.
Moreover, oil seals are widely used throughout the aerospace industry in both space exploration and aviation applications. Sujan Industries manufactures all aircraft rubber items including O-rings, Gaskets, Seals, Pistons, Grommets, Washers, and Protective Boots & Bellows. In the aviation sector, pneumatics and hydraulics are used to operate components like landing gear and wing flaps. Rubber gaskets are needed in these systems to keep dust and air out while ensuring aircraft components run effectively.
Picking the right type of oil seals is crucial for the proper functioning of machines because in some situations not all types can fit to work on certain machines.
There are quite a few factors to put into consideration when you’re choosing the right oil seal for your machine. Some of these factors include – dimensions, pressure, temperature, type of fluid, lubricant, shaft speed, shaft and bore tolerance, and more.
The capacity of oil seals to handle different intensities of pressure varies with their composition and application, so it is important to understand the compression set of your equipment. Just like the pressure, the temperature that your oil seal will be operating in must be known to be able to choose one that can withstand the working temperature.
Likewise, different types of fluids like grease, water, oil, fuels, etc. will come into contact with oil seals. So, knowing what type of fluids will be in constant contact with oil seals will help you choose the one capable of withstanding the surrounding conditions. When we talk about lubricants, seals always perform well when lubricated, however, in some machines there are dry spells. If you are a supplier of aftermarket parts in India or a user looking for oil seals in the aerospace industry, your search might end with Sujan Industries.
Oil seals are critical to a machine’s functionality. A machine’s oil seals are critical to its functionality. Picking the right seal for your machine is vital as it not only guarantees the optimum performance of applications but also ensures a safe working environment for years to come. With so many rotary shaft seal options available, it can be hard to know which one to choose for your machine! Contact us today to speak to one of our experts and pick the best one for you.
Nitrile Butadiene Rubber (NBR, nitrile)
NBR, also known as nitrile rubber or nitrile, is the most popular material for an oil seal because of its good resistance to many oils and greases, such as mineral grease and hydraulic oil. Depending on their composition, synthetic oils and greases, such as those based on glycol, can damage NBR rubber materials. Depending on the amount of glycol, a PTFE lip seal may be the best choice. NBR is also unable to cope with contact with acids and solvents. The rubber is suitable for oil and grease at temperatures from -35 °C to 100 °C.
Most ERIKS oil seals, such as the types M, MST, R and RST, are made of NBR as standard.
Fluorine rubber (FKM, Viton™)
FKM or FPM, which is in well-known brand Viton™, can withstand higher liquid temperatures of up to 180 ˚C. FKM is highly resistant to strong acids and bases, as well as to synthetic oils and greases. Glycol-based oil and grease, however, can also damage FKM.
Because of the higher temperature resistance of FKM, this material is also chosen for applications where higher speeds play a role, which raise the temperature at the sealing lip considerably. Usually, using FKM will result in a longer life than using NBR. This compensates the higher price of FKM compared to NBR, as an FKM does not have to be replaced as frequently. The low temperature resistance of standard FKM is limited to -15 ˚C.
Polytetrafluoroethylene (PTFE, Teflon®)
PTFE, which is used in the well-known brand Teflon®, is less commonly used, but it is the preferred material for specific rotating seals in the chemical, food and pharmaceutical industries. This material is notable for having a very low frictional resistance and the best chemical resistance. It can also withstand a very wide range of temperatures in these types of seals; -80 ˚C to 200 ˚C. The shafts on which oil seals with PTFE lips are used require a harder and finer finish. Something like an axle sleeve can also be used to meet this requirement.
EPDM
EPDM oil seals are less common. They are used in solvent, hot water and steam applications, EPDM resists low temperatures down to -50 °C and UV radiation well. Some types of EPDM are also suitable for higher temperatures up to +150 °C. EPDM oil seals are usually available upon request.
VMQ (silicone)
VMQ, also known as silicone, is also used for oil seals, but this is less common because the mechanical strength of VMQ is low and this material has poor wear-resistance This makes it less suitable for dynamic applications, but it can withstand fairly low and high temperatures from -60 °C to 200 °C. Many types of VMQ are also suitable for contact with pharmaceutical and food products, so VMQ is an option worth considering. VMQ oil seals are usually available on request.
RELATED PRODUCTS
Are you interested in our products?
You are welcome to call us and we will get back to you within 24 hours
No. 68, Hua'an Street, Renze District, Xingtai City, Hebei Province, China
+86 188 0309 4557
Won many honorary certificates through a number of patented inventions